DATA SHEET

Optical Graphic Extension Module-Fibres Detachable

Contents

- Description
- Features
- Applications
- Technical Specifications
- Functions
- Drawing
- Fiber Connection
- Environmental Reliability
- DVI Pin Description
- Schematic Diagram
- Test Report for AP1-201-TR

Alpha Point Ltd. Vernissakatu 8A FIN-01300, Vantaa Finland

http://www.alpha.fi

Optical Graphic Extension Module

- Fibres Detachable -

Description

Optical graphic extension module consists of transmitter module and receiver module, each of which has 4 LC connectors and a 20-pins DVI–D plug. Users could decide extension length at their discretion by choosing the length of fibre-optic cables with LC ferrules at the ends. It offers graphic TMDS signals to be extensible up to the limits of modal bandwidth of selected multi-mode glass fibers, or, 50/125 um or 62.5/125um.

A transmitter, 4 VCSEL array inside and a receiver, 4 Pin-PDs array inside has a capability to transmit UXGA (1600X1200) graphic signals with 60Hz refresh rate. At such data bandwidth, this module can extend up to 1,640 feet (500 meters) much over the limits of copper wire extension, without any distribution amplifier or repeater.

The modules are constituted of three parts as follows;

- One transmitter converting electrical to optical signals, model name: AP1-201-T
- One receiver converting optical to electrical signals, model name: AP1-201-R
- Two AC Adaptors to 110V-240V with DC 5V 600mA outlet

Features

- Digital video signals at extended distances
 - Up to 500 meter (1640 feet) in use of multi-mode glass fiber with 400MHzkm modal bandwidth
 - Connect end modules with a pair of duplex LC connection fiber-optic cables
- Support up to UXGA resolution of 4 TMDS (Red/Green/Blue/Clock) with 1 pixel/clock mode
- Must use multi-mode glass fiber cables with LC connections
- Offer DVI-D plugs at the ends of systems and displays without DDC connections
- Small, Light, and Easy to connect
- Free from cable EMI/RFI

Applications

- Digital FPDs, PDPs and projectors for medical appliances, aero, traffic control, factory, and bank
- Digital FPDs and projectors in conference room and auditorium
- Kiosk with digital FPDs showing full motion graphic displays from remote systems
- PDP displays for information in public sites
- LED signboards in streets and in stadiums

Technical Specifications

- General Specifications

	Parameter	Specifications
	Laser Diodes in Tx Module	850nm Multi-mode VCSEL (Vertical Cavity
Components		Surface Emitting Laser)
	Photo Diodes in Rx Module	GaAs PIN-PD
	Input and Output Signals	TMDS Level (complying with DVI1.0)
Electrical	Data Transfer Rate (Graphic Data)	Max. 1.65Gbps
	Total Jitter at the end of Rx output	Max. 309 ps
	Skew inter-channels	Max. 6ns
Optical	Link Power Budget	Min 10.5dB
Mechanical	Module dimension (mm)	38WX19HX72L
	Optical Connector	2 Duplex LC connectors
Connect	Electric Connector Type from Systems and to Displays	24 pin DVI-D plug
	Recommended Fiber	50/125 um Multi-mode Glass Fiber

- Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
Supply Voltage	Vcc	- 0.3	+ 6.0	V
Input and Output Voltage	V _{in/out}	- 0.3	V _{CC}	V
Operating Temperature	T _{op}	0	50	°C
Operating Relative Humidity	RH _{op}	5	80*	%RH
Storage Temperature	T _{sto}	- 30	+ 60	°C
Storage Relative Humidity	RH _{sto}	5	95*	%RH

Note*: Under the condition of No drops of dew

Operating Conditions <u>Transmitter module (E-to-O converter): AP1-201-T</u>

	Parameter	Symbol	Minimum	Typical	Maximum	Units
	Supply Voltage	Vcc	4.5	5.0	5.5	V
Ωp	Supply Current	ITCC	-	320	360	mA
adr	Power Dissipation	P _{TX}		1.6	1.98	W
er oly	Power Supply Rejection	PSR		50		mV_{p-p}
	Data Output Load	R _{LD}		50		0
TMDS	Graphic Supply Voltage (Note2)	GV _{CC}	+ 3.1	+ 3.3	+ 3.5	V
	Single-Ended High Level Input Voltage	GV⊮	GV _{CC} - 0.01	GV _{CC}	GV _{CC} + 0.01	V
	Single-Ended Low Level Input Voltage	GV _{IL}	GV _{CC} - 0.6	-	GV _{CC} - 0.4	V
	Single-Ended Input Swing Voltage	GVISWING	0.4	-	0.6	V
	Output Optical Power	Po	-9.5		-3.6	dBm
_	Wavelength	λ	830	850	860	nm
_ Op	Spectral width in RMS	Δλ			0.85	nm
Note:	Relative Intensity of Noise (Note4)	RIN		-117		dB/Hz
s) −in⊧	Extinction Ratio	Ext	9			dB
	Rising/Falling Time	T _{rise} /T _{fall}			260	ps
	Jitter in p-p value (Note5)	T _{jitter}			270	ps

Note1. Tested with a $50mV_{p-p}$ sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with

the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.

- Note2. Graphic Supply Voltage is regulated reference voltage for signal processing in modules Note3. Measure signals at the end of 2 meter 50/125um MMGOF
- Note3. Measure signals at the end of 2 meter 50/125 Note4. Measure in 1GHz of frequency bandwidth
- Note5. Use PPG (Pulse Pattern Generator) source with jitter 50ps

Receiver module (O-to-E converter): AP1-201-R

	Parameter	Symbol	Minimum	Typical	Maximum	Units
	Supply Voltage	Vcc	4.5	5.0	5.5	V
S P	Supply Current	IRCC	-	280	320	mA
adr	Power Dissipation	P _{RX}	-	1.4	1.76	W
er V	Power Supply Rejection	PSR		50		mV _{p-p}
	(Note6)					
	Data Input Load	R _{LD}		50		0
Ⅎ	Graphic Supply Voltage	GV _{cc}	+ 3.1	+ 3.3	+ 3.5	V
Đ	(Note7)					
Ō	Single-Ended Output Swing	GVISMING	0.4	_	0.8	V
	Voltage (Note8)	O VISVING	0		0.0	•
	Receiving Optical Power	Po	-20		-3.6	dBm
0	Receiving Wavelength	λ	830	850	860	nm
() pti	Signal_Detect Good	SDg			-17	dBm
lot a	Signal_Detect Fail	SDf	-25			dBm
l Linł e9)	Link Power Budget	P _{bgt}	10.5			dB
Â	Total Jitter (note 10)	TR _{jitter}			309	ps

Note6. Tested with a $50mV_{p-p}$ sinusoidal signal in the frequency range from 500 Hz to 500 MHz on the V_{CC} supply with the recommended power supply filter in place. Typically less than a 0.25 dB change in sensitivity is experienced.

Note7. Graphic Supply Voltage is regulated reference voltage for signal processing in modules

Note8. TMDS outputs are coupled in AC

Note9. Measure signals at the end of 2 meter 50/125um MMGOF

Note10. It is measured as total jitters including Tx and Rx modules under maximum extension, 500 meters with SXGA 75Hz.

- Recommended Specifications of Fibre-Optic Cables

Conditions	Specifications
	50/125µm Multi-mode Graded Index
	Glass Fibre
$\lambda = 850$ nm	Min. 400 MHz km
$\lambda = 850$ nm	Max. 3.5dB/km
	10 – 1650ft (500 meter)
A pair of duplex LC* or 4 simplex LCs	4 ferrules
	Max. 0.4ns
	Max. 0.5dB
In 330 ft (100 meter) extension	Max. 1.5dB
	Conditions $\lambda = 850$ nm $\lambda = 850$ nm A pair of duplex LC* or 4 simplex LCs In 330 ft (100 meter) extension

Note*: some plastic couplers to clamp two LC connectors could not fit in.

Functions

- Power Save Mode in Transmitter Module

The laser diodes are lit only when +5V voltage should be supplied into the 14-pin in DVI connectors.

The voltage passing through a regulator has LD drive circuit work.

- Signal Detect Mode in Receiver Module

It offers squelch function blocking output signals when optical input power is lower than as specified in a certain case, for instance, loosing optical connectors.

Drawing

Dimension [mm]

Note: The transmitter, AP1-201-T and the receiver, AP1-201-R have the same mechanical dimensions.

Fiber Connection

The diagram shows the connection of transmitter (Tx; plug in PCs) and receiver (Rx; plug in displays) modules by using 2 dual LC patch cords fibers or 4 separate LC patch cord fibers.

Warning; two dual LC patch cords made by some manufacturers could not fit in together since width of their plastic couplers are too wide to plug in AP1-201TR's LC receptacles. We recommend it to be 12.40 mm (not over 13.0mm).

AP1-201-TR (Ver. 1.0)

Alpha Point Ltd.

www.alpha.fi

16 DEC 2002

Packaging Tray

Environmental Reliability

The AP1-201TR would be verified in the following environments such as temperatures, shock and vibration and EMI/EMC (to be certified by FCC class A).

Test items		Conditions	Standard	Evaluation	
Temperature and Humidity	Storage	60°C and 90%RH; -10°C and 0%RH for 48Hr		Less than total jitter at the end	
	Operation	60°C and 50%RH; -10°C and 0%RH		of Rx 444ps after test	
Shock Vibration	Mechanical Shock	Pulse: 11 ms Peak level: 30g Shock pulse: 18 times	MIL-PRF-28800F		
	Vibration	Peak acceleration: 20g Frequency: 20~2000Hz	MIL-STD-883 Method 2007A		
EMI/EMC		Certified by FCC class A			

DVI Pin Description

Pin	Symbol	Functional Description		
1	CH2-	TMDS Data Signal Channel 2 Negative		
2	CH2+	TMDS Data Signal Channel 2 Positive		
3	GND	TMDS Data Signal Channel 2/4 Shield		
4	CH4-	TMDS Data Signal Channel 4 Negative		
5	CH4+	TMDS Data Signal Channel 4 Positive		
6	N.C.	DDC is not supported		
7	N.C.	DDe is not supported		
8	N.C.			
9	CH1-	TMDS Data Signal Channel 1 Negative		
10	CH1+	TMDS Data Signal Channel 1 Positive		
11	GND	TMDS Data Signal Channel 1/3 Shield		
12	CH3-	TMDS Data Signal Channel 3 Negative		
13	CH3+	TMDS Data Signal Channel 3 Positive		
1/	5 V	Main Power Input for Transmitter from Host (Note10)		
14 5 4		5 V Output for Receiver to monitor		
15	GRD Ground			
16	Hot plug Signal is driven by monitor to enable the system to			
10	Detect	identify the presence of a monitor		
17	CH0-	TMDS Data Signal Channel 0 Negative		
18	CH0+	TMDS Data Signal Channel 0 Positive		
19	GND	TMDS Data Signal Channel 0/5 Shield		
20	CH5-	TMDS Data Signal Channel 5 Negative		
21	CH5+	TMDS Data Signal Channel 5 Positive		
22	GND	TMDS Clock Signal Shield		
23	CLK-	TMDS Clock Channel Negative		
24	CLK+	TMDS Clock Channel Positive		

Note10) The AC-to-DC adapter for transmitter is option for Desk Top PC user. But Note PC user has to use the AC-to-DC adapter because the power of Note PC is not enough to drive AP1-201 transmitter.

Schematic Diagram

www.alpha.fi

-	14	-
Π	1	
_		

No	Description	SPEC.	
1	Case top	DO DO /400	
2	Case bottom	PC or PC/AB	
3	AC plug terminal	US type	
4	DC cord ASS'Y	@1.4X@3.5X9.5	
5	Label	Deelgnation	

Packaging Box Omension

Test Report for AP1-201-TR

Introduction

1. Features

- 1) Digital video signal distribution can be extended up to 500 meter (1640 feet) using multi-mode glass fiber with 400MHz/km modal bandwidth.
- 2) The two modules are connected with 4 fiber-optic cables with LC terminations
- Supports up to UXGA resolution (1600 x 1200) at 60Hz refresh rate
 Standard DVI-D module connectors at the ends with no DDC2B support required
- 4) Cables can be installed in conduit with prior to module installation
- 5) Cables are light-weight, zero EMI/RFI emissions,
- 6) No software to install
- 7) Free from cable EMI/RFI

2. Reliability of Modules

Opticis Optical Graphic Extension Module has a unique metallic light enclosure and verified optical fiber that make superior EMC characteristics and achieved good reliability test results.

We have three kinds of test criteria for a reduction of variability and a continuous improvement of the process by our FEMA (Failure Mode and Effective Analysis) program.

- 1) Mechanical test (Vibration, Shock)
- 2) Temp. & Humidity test
- 3) EMC test (FCC class A verification, CE certification)

1. Test						
Heading	Test	Conditions	Duration	Sample Size	Failure	Remarks
Operating Test	Operating at each Temperature (See Note)	* -30~100 °C (Interval:10 °C)	30 Min (Each Temperature)	n =4	0	Note : Visual Test on the Display
	Low Temperature	* T _S = -30 °C	96 HR	n=2	0	1. TS : Storage Temperature
Storage	High Temperature	* T _S = 90 °C	96 HR	n=2	0	2. RH : Relative Humidity
Test	High Humidity High Temperature	* T _s : 85 °C * RH : 85%	96 HR	n=2	0	
	Mechanical Shock	* Pulse: 11 ms * Peak level : 30 g * Shock pulse : 3 times/Axis	-	n=2	0	
Mechanical Test	Mechanical Vibration	* Peak acceleration: 20 g * Frequency:30~2000 ? * Sweep time: 30 Minutes * 4 Times/Axis	-	n=2	0	

Reliability Test & Analysis Methodology

2. Analysis

- 1) Failure base: DVI (Digital Visual Interface Revision 1.0)
- 2) Final qualification date: The 1st quarter of 2002

EMC Test

1. EMI: Processing in FCC class A and CE standards

2. EMS: Met CE standards

1) EMI

STA	RESULTS				
EN 55 022/98 AND	CE (Conducted Emission)	Met Class & / PASS			
FCC PART 15 SUBPART B	RE (Radiated Emission)				
EN 61000-3-2	Harmonics	Met Class A / PASS			
EN 61000-3-3	Flickers	Met Class A / PASS			

2) EMS (Current Status)

STANDA	RESULTS	
EN 61 000-4-2:1995	Electrostatic Discharge Immunity (Air: 8 KV, Contact: 1.3 KV)	Met Criterion A / PASS